Physics R&D for LAr20 for LBNE

Physics R&D in the Integrated plan:

Physics R&D: Monte Carlo studies, physics measurements, and development of Analysis tools necessary to assess experimental sensitivities and do LBNE physics analysis.

- Collect and analyze neutrino interaction and calibration data on Argon
 - Measure neutrino interactions and cross sections to estimate sensitivities to neutrino oscillation physics and set design parameters for LBNE (wire spacing, number of wire planes...)
 - Study kaon interactions and cosmic backgrounds for proton decay studies
 - Study energy resolutions in a TPC in a test beam
 - Test cosmic ray background rejection while running on the surface
 - Develop data compression schemes for continuous data taking
 - Determine sensitivity to Supernova relic and burst neutrinos and develop Supernova triggering capabilities
- Develop Analysis tools (see Brian's talk for details)
 - Develop detailed MC simulation
 - Develop fully automated reconstruction

Physics Accomplishments from existing LarTPC activities

- Lots of simulation work from many groups worldwide
- Analysis of 50 liter data and ICARUS T300 surface test

Future Physics R&D that gets us to LAr20

- ArgoNeuT
- Calibration TPC test
- MicroBooNE experiment

(Also anticipate results from ICARUS and 5m drift tests in Europe)

Sensitivity to electron neutrino appearance searches

Work done so far:

- •Electron neutrino efficiency: ~80-90%
- •Neutral pion contamination: 0.2%-0.5%
- •Muon momentum resolution via MS: ~12% (from MC studies and using ICARUS cosmic ray events collected in Pavia run: hep-ex/0606006v1
- •Electromagnetic shower resolution:16% (hep-ex/0812.2373v1)

Translates to detector sensitivity x6 that of WC detectors

Existing work includes:
ICARUS MC and T300 data studies
MicroBooNE Monte Carlo studies
Monte Carlo studies from T2K 2km effort (A. Rubbia)
Hand-scanning study from Tufts group

LArTPCs image events and collect charge Separates electrons from backgrounds with gammas

do e/gamma separation via dE/dx

Where electrons
deposit
1 MIP = green
(MIP = minimum ionizing particle)

e⁺e⁻ deposit 2 MIPs = red

GEANT4 Monte Carlo Simulation

Energy loss in the first 24mm of track: 250 MeV electrons vs. 250 MeV gammas

MIP deposition in f rst 2.4 cm of track

For electron eff ciency of 80% contamination is <5%

Similar studies report 90% electron eff ciency for 6.5% contamination

T2K 2km studies from A. Rubbia's group: e/pi0 separation

•dE/dx in first 2.4 cm studied for 1000 e and pi0 events (simulation with noise): 0.25, 0.5, and 2 GeV

Rejection
improves
as E increases
(as Compton
Scattering
process
decreases)

igure 33: Survival π^0 efficiencies as a function of the incoming energy. The points are simulations and the the result of an exponential fit.

fold in vertex separation from hand scan: overall 0.2% ineff ciency

Hand scanning study to determine efficiencies:

Both topology and dE/dx used to identify events Assumes off-axis NuMI beam below 3.5 GeV at 800 km from FNAL

5mm pitch

train05 1.eye

Num: CCe 111 CCmu 379 CCtau 0 NC 1509

Number of events 93

*** Your selection ***

	CCe	CCmu	NC
true CCe	64	0	3
true CCmu	1	3	0
true NC	7	2	13

CCe Efficiency 95.5% NC rejection 99.54% CCmu rejection 99.74%

Still to do:

Near term studies to be done (6-9 months)

- •Repeat hand scanning studies with latest MC simulation
- •Use MC to address a few key near-term questions for LBNE
 - eg: What is the fiducial to active ratio for LBNE

ArgoNeuT
Operational
Physics: Measure neutrino-argon cross sections

ArgoNeuT will collect ~15k events in first data run:

- Develop analysis tools with neutrino data
- Measure CCQE cross section
- Measure coherent vs resonant pion production
- Measure electron neutrino intrinsic events

Ph.D theses

0.3 ton TPC using MINOS to catch muons

Data run began mid-September – expect ~20k neutrino and anti-neutrino events by March

MicroBooNE: Large data set of neutrino interactions

J. Spitz	Nuance channel	Reaction	#interactions/6E20 POT	$\%$ of total ν_{μ}
			70 ton FV	
CCQE	1 (CC)	$\nu_{\mu}n \longrightarrow \mu^{-}p$	52524	45.0
NCelastic	2 (NC)	$\nu_{\mu}N \longrightarrow \nu_{\mu}N$	16945	14.5
Single pion resonant	3 (CC)	$\nu_{\mu}p \longrightarrow \mu^{-}p\pi^{+}$	16124	13.8
	4 (CC)	$\nu_{\mu}n \longrightarrow \mu^{-}p\pi^{0}$	6106	5.2
	5 (CC)	$\nu_{\mu}n \longrightarrow \mu^{-}n\pi^{+}$	5833	5.0
	6 (NC)	$ u_{\mu}p \longrightarrow \nu_{\mu}p\pi^{0} $	2878	2.5
	7 (NC)	$\nu_{\mu}p \longrightarrow \nu_{\mu}n\pi^{+}$	1819	1.6
	8 (NC)	$\nu_{\mu}n \longrightarrow \nu_{\mu}n\pi^0$	3572	3.1
	9 (NC)	$\nu_{\mu}n \longrightarrow \nu_{\mu}p\pi^{-}$	2368	2.0
DIS	91 (CC)	$\nu_{\mu}N \longrightarrow \mu^{-}X$	1123	1.0
	92 (NC)	$\nu_{\mu}N \longrightarrow \nu_{\mu}X$	410	0.4
Coherent/diffractive	96 (NC)	$\nu_{\mu}A \longrightarrow \nu_{\mu}A\pi^0$	1479	1.3
	97 (CC)	$\nu_{\mu}A \longrightarrow \mu^{-}A\pi^{+}$	2293	2.0
Subtotal			113474	97.3

	Nuance channel	Reaction	#interactions/6E20 POT	% of total ν_e
			70 ton FV	
CCQE	1 (CC)	$\nu_e n \longrightarrow e^- p$	285	37.2
NCelastic	2 (NC)	$\nu_e N \longrightarrow \nu_e N$	89	11.7
Single pion resonant	3 (CC)	$\nu_e p \longrightarrow e^- p \pi^+$	110	14.4
	4 (CC)	$\nu_e n \longrightarrow e^- p \pi^0$	48	6.3
	5 (CC)	$\nu_e n \longrightarrow e^- n \pi^+$	53	6.9
	6 (NC)	$\nu_e p \longrightarrow \nu_e p \pi^0$	19	2.5
	7 (NC)	$\nu_e p \longrightarrow \nu_e n \pi^+$	13	1.7
	8 (NC)	$\nu_e n \longrightarrow \nu_e n \pi^0$	24	3.1
	9 (NC)	$\nu_e n \longrightarrow \nu_e p \pi^-$	17	2.2
DIS	91 (CC)	$\nu_e N \longrightarrow e^- X$	26	3.4
	92 (NC)	$\nu_e N \longrightarrow \nu_e X$	9	1.1
Coherent/diffractive	96 (NC)	$\nu_e A \longrightarrow \nu_e A \pi^0$	9	1.1
	97 (CC)	$\nu_e A \longrightarrow e^- A \pi^+$	17	2.2
Subtotal			719	93.9

Suite of low energy cross section measurements

- □15k contained CCQE events
- Coherent vs. resonant pion production
- K production: cross sections and proton decay studies
- Electron neutrino cross sections

Development goals
•Study ability to reject

- backgrounds for surface operations
- •Study light collection both for triggering and for physics measurements

Sensitivity to supernova relic and burst studies

100 kt of LAr, SN @ 10 kpc

Interaction	Rates (×104)
ν _e CC (⁴⁰ Ar, ⁴⁰ K*)	2.5
ν _x NC (⁴⁰ Ar*)	3.0
v_x ES	0.1
anti-v _e CC (⁴⁰ Ar, ⁴⁰ Cl*)	0.054

$ \begin{array}{c} LAr \\ \nu_e + {}^{40}\mathrm{Ar} \rightarrow {}^{40}\mathrm{K}^* + \mathrm{e}^- \end{array} $
$\bar{\nu}_e + {}^{40}{\rm Ar} \rightarrow {}^{40}{\rm Cl}^* + e^+$
$\nu_{\alpha} + {}^{40}\mathrm{Ar} \rightarrow {}^{40}\mathrm{Ar}^* + \nu_{\alpha}$
${\longrightarrow} {}^{40}\mathrm{Ar} + \gamma_1 + \dots \gamma_n$
$ u_e + e^- \rightarrow \nu_e + e^- $
$\overline{ u}_e + e^- ightarrow \overline{ u}_e + e^-$
$\nu_x + e^- \rightarrow \nu_x + e^-$

A. Bueno NP2008, via K. Scholberg

Sizable rates for SN bursts
Backgrounds for SN relic –
solar neutrinos at low
energies and atmospheric at
higher energies
Sensitivity, eg: 1.7 ±1.6 events
in 3kton detector running for 5
years...(hep-ph/0408031)

MicroBooNE secondary physics goal: Ability to detect Supernova

- □ Just a handful of events from a SN can teach us a lot (tens of events from Supernova 1987A generated many papers). MicroBooNE would collect 25-30 charged current events from a galactic SN and an equal number from neutral current interactions should these be reconstructable
- Events on Argon are complementary to events in WC detectors
 - Dominant interaction in WC is inverse beta-decay on anti-electron neutrinos
 - Dominant interaction in Argon is charged current interaction of electron neutrinos

Modest expansion to MicroBooNE electronics design required to be SN live

SN triggering studies:
Will have capability on
MicroBooNE to read out
continuously to be able
to do studies of
continuously live
running

Proton decay physics R&D

Next generation LArTPCs for LBNE can extend sensitivity to proton decay in neutrino + kaon mode. How well can this be done?

Already substantial MC work to estimate PD sensitivity vs depth (eg: hep-ph/0701101)

Simulated K⁺ event in LAr

~300 kaons expected from BNB and NuMI

Understand signal and backgrounds (like K2K -> SuperK: hep-ex/0801.0182) using beam neutrino interactions

dE/dx measurements study kaon "signal" ID and background rejection

J. Spitz	Nuance channel	Reaction	interactions/6E20 POT 70 ton(90 ton) FV	xsec uncertainty
Single kaon resonant	53-55 (CC)	$\nu_{\mu}N \longrightarrow \mu^{-}\Sigma K$	5(7)	~40%
	56-59 (NC)	$\nu_{\mu}N \longrightarrow \nu_{\mu}\Sigma K$	3(4)	~40%
	73 (CC)	$\nu_{\mu}n \longrightarrow \mu^{-}K^{+}\Lambda$	47(61)	~40%
	74 (NC)	$\nu_{\mu}p \longrightarrow \nu_{\mu}K^{+}\Lambda$	8(10)	\sim 40%
	75 (NC)	$\nu_{\mu}n \longrightarrow \nu_{\mu}K^{0}\Lambda$	11(14)	\sim 40%
DIS	91 (CC) post-FSI	$\nu_{\mu}N \longrightarrow \mu^{-}XK$	50(64)	$\sim 25\%$
	92 (NC) post-FSI	$\nu_{\mu}N \longrightarrow \nu_{\mu}XK$	12(16)	$\sim 25\%$
Subtotal			131(169)	

TPC Calibration test: Put TPC in Fermilab MTest beam Possibly re-use ArgoNeuT cryostat

Measured rates for 1E11 at MW1SEM

Beam Energy (GeV)	Rate at Entrance to Facility (per spill)	Rate at Exit of Facility (per spill)	%Pions, Muons**	% Electrons**
16	132,000	95,000	87%	13%
8	89,000	65,000	55%	45%
4	56,000	31,000	31%	67%
2	68,000	28,000	<30%	>70%
1	69,000	21,000	<30%	>70%

Scientific resources: Collaborations are growing – still needs to grow more...

ArgoNeuT collaboration

F. Cavanna

University of L'Aquila

B. Baller, C. James, G. Rameika, B. Rebel

Fermi National Accelerator Laboratory

M. Antonello, R. Dimaggio, O. Palamara

Gran Sasso National Laboratory

C. Bromberg, D. Edmunds, P. Laurens, B. Page

Michigan State University

S. Kopp, K. Lang

The University of Texas at Austin

C. Anderson, B. Fleming, S. Linden, M. Soderberg*, J. Spitz, T. Wongjirad, K. Partyka, D. Chari

Yale University

MicroBooNE Collaboration:

- Brookhaven Lab: H. Chen, J. Farrell, F. Lanni, D. Lissauer, D. Makowiecji, J. Mead, V. Radeka, S. Rescia, J. Sondericker, C. Thorn, B. Yu
- □ Columbia University: L. Camilleri, C. Mariani, M. Shaevitz, B. Willis**
- □ FermiLab: B. Baller, C. James, S. Pordes, G. Rameika, B. Rebel, D. Schmitz, J. Wu
- Kansas State University: T. Bolton, G. Horton-Smith, D. McKee
- Los Alamos Lab: G. Garvey, J. Gonzales, B. Louis, C. Mauger, G. Mills, Z. Pavlovic, R. Van de Water, H. White, S. Zeller
- □ Massachusetts Institute of Technology: W. Barletta, L. Bugel, J. Conrad, C. Ignarra,
- B. Jones, G. Karagiorgi, T. Katori, H. Tanaka
- □ Michigan State University: C. Bromberg, D. Edmunds
- Princeton University: K. McDonald, C. Lu, Q. He
- □ St. Marys: P. Nienaber
- University of California, Los Angelas: H. Wang
- University of Cincinnati: R. Johnson, A. Wickremasinghe
- University of Texas at Austin: S. Kopp, K. Lang
- □ Yale University: C. Anderson, B. T. Fleming*, S. Linden, M. Soderberg, J. Spitz

58 scientists from 13 institutions More than doubled in a year

^{*=}Spokesperson, **=Deputy Spokesperson

Summary

- •Substantial Monte Carlo work already done demonstrating the power of the technique for neutrino physics and nucleon decay
- •Near term Monte Carlo work will help to set LBNE design parameters
- •Data from ArgoNeuT and MicroBooNE will complete Physics R&D program for LBNE
- •With what is learned from this program through MicroBooNE, we can proceed to LAr20.

